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ABSTRACT
Nowadays, Online Social Networks (OSNs) have become dra-
matically popular and the study of social graphs attracts
the interests of a large number of researchers. One critical
challenge is the huge size of the social graph, which makes
the graph analyzing or even the data crawling incredibly
time consuming, and sometimes impossible to be complet-
ed. Thus, graph sampling algorithms have been introduced
to obtain a smaller subgraph which reflects the properties
of the original graph well. Breadth-First Sampling (BFS)
is widely used in graph sampling, but it is biased towards
high-degree vertices during the process of sampling. Besides,
Metropolis-Hasting Random Walk (MHRW), which is pro-
posed to get unbiased samples of the social graph, requires
the graph to be well connected. In this paper, we propose
a vertex sampling algorithm, so-called Albatross Sampling
(AS), which introduces random jump strategy into MHRW
during the sampling process. The embedded random jump
makes the sampling procedure more flexible and avoids being
trapped in some locally well connected part. According to
our evaluation, we find that no matter using tightly or loose-
ly connected graphs, AS performs significantly better than
MHRW and BFS. On the one hand, AS estimates the de-
gree distribution with much lower Normalized Mean Square
Error (NMSE) by consuming the same resource budget. On
the other hand, to get an acceptable estimation of the degree
distribution, AS requires much less resource budget.
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1. INTRODUCTION
In recent years, online social networks (OSNs) have be-

come dramatically popular all over the world. For exam-
ple, Twitter, which provides microblogging service, has more
than 200 million users around the world and generates 110
million “tweets” per day by January, 2011 [7]. The spread-
ing of OSNs also attracts a large number of researchers to
explore and study the newly-built large scale networks and
their research topics are diverse and fascinating, such as so-
cial interaction [23], information propagation [11] and user
behavior characterization [4] in social networks.

Social networks are usually modeled as social graphs for
analysis. One of the challenges that researchers face is the
huge size of OSNs. Firstly, it is almost impractical to deal
with the complete datasets, since crawling large social graph-
s is incredibly time consuming, and sometimes is impossible
to be completed. Moreover, algorithms for analyzing huge
social graphs require a large quantity of time to compute,
even if running on the platform of high-performance com-
puter clusters. Secondly, complete datasets from OSNs are
usually not publicly accessible, due to privacy settings of
users and the protection from OSN companies. Finally, the
number of users in OSNs grows rapidly and connections be-
tween users vary with time, thus dynamic large graphs can-
not be crawled totally. Therefore, attention has focused on
how to shrink a huge social graph to a representative sam-
ple, which should have a relatively small size and maintain
properties of the original social graph.

Several graph sampling methods have been proposed to
obtain samples of OSNs and these graph sampling methods
are classified as edge sampling method and vertex sampling
method [12]. Random Vertex Sampling and Random Edge
Sampling are two basic and intuitive sampling methods. As
their names imply, Random Vertex Sampling and Radom
Edge Sampling methods sample vertices and edges random-
ly in the whole graph, respectively. However, these two sam-
pling methods are either resource intensive or impractical to
sample OSNs [19].

One practical graph sampling method is Breadth-First
Sampling (BFS), which is used for social network analysis



in [2,11,16,23]. However, BFS is biased towards high-degree
vertices [9]. Another widely used sampling algorithm is Ran-
dom Walk (RW) and many practical graph sampling meth-
ods are based on RW.
On the one hand, RW naturally samples edge uniformly

in non-bipartite undirected graphs, but not in disconnected
graphs [14]. Frontier Sampling (FS) [19], which is an edge
sampling method using multidimensional random walkers,
is proposed to exhibit lower estimation errors than RW in
the presence of disconnected or loosely connected subgraphs.
Since FS is an edge sampling method, it is more convenient
to estimate edge-centric properties and specific estimators
of degree distribution and global clustering coefficient are
proposed in [19].
On the other hand, RW method is biased towards high-

degree vertices [9] and Metropolis-Hasting Random Walk
(MHRW) method is proposed to obtain unbiased samples of
social graphs. MHRW is a vertex sampling methods, whose
goal is to mimic random vertex sampling by random walk-
ing in graphs. However, one design assumption of MHRW
is that the social graph is well connected [8], which results
in MHRW not fit for sampling disconnected or loosely con-
nected graphs. Furthermore, Random Jump (RJ), which
may jump to any random vertex with a fixed probability in
each step, is proposed in [12] to get rid of the walker being
stuck in some locally well connected part of the graph.
In this paper, we focus on proposing an improved ver-

tex sampling method which performs well in sampling social
graphs, either tightly or loosely connected. By introducing
random jump strategy into MHRW, we propose a hybrid
sampling algorithm named Albatross Sampling (AS). Ac-
cording to our evaluation, given the same sampling cost, AS
is more robust for estimating degree distribution with low-
er Normalized Mean Square Error (NMSE) and also more
effective for converging more quickly with much smaller con-
vergence time. Therefore, AS is a promising, robust and ef-
fective hybrid vertex sampling algorithm for social network
analysis.
This paper is organized as follows. In Section 2, basic

properties about social graphs and measurement of infor-
mation retrieval cost in the sampling process are introduced.
Then, in Section 3, existing graph sampling algorithms are
discussed in detail and our improved algorithm Albatross
Sampling is proposed in Section 4. Finally, the performance
of these algorithms for sampling social graphs is evaluated
in Section 5 and conclusion is made in Section 6.

2. BACKGROUND

2.1 Properties of Social Graphs
OSNs are usually modeled as social graphs, which is repre-

sented as G = (V,E). Here, a vertex v in set V represents a
user in the OSN and an edge e in set E represents a “follow-
ing” relationship or a friendship link between users, which
can be either directed or undirected.
For directed graphs, we define kiv as the in-degree and kov

as the out-degree of vertex v, and kv as the degree of vertex
v when the directed graph is changed into undirected graph.
Then, we define θik and θok as the fraction of vertices with
in-degree and out-degree, respectively, less than or equal to

k. Then, θ̂ik and θ̂ok are the corresponding estimated value
through sampling.
In the real world, some large scale social network graph-

s are not fully connected and may contain disconnected or
loosely connected components, e.g. wireless social network-
s [6]. The simple random walker may be trapped in some
locally well connected part of the graph, and if the proper-
ties of that part differ significantly from those of the whole
graph, the sample set cannot represent the original graph
well. Therefore, robust and effective methods for sampling
disconnected or loosely connected graphs should be studied.

2.2 Measurement of Sampling Cost
In this part, we propose several definitions related to the

measurement of information retrieval cost during sampling.
Firstly, Total-Cost is defined as the total resource budget

(time, bandwidth, or cache) that is used in the process of
sampling. Since downloading the profile of a user is much
more time-consuming compared to making the choice of the
next sampled user, Total-Cost can be viewed as the maxi-
mum number of unique users that are visited during sam-
pling.

Secondly, in most social networks, all incoming and out-
going neighbors of a sampled vertex can be learned. For
instance, when we visit a user in Twitter, all the followers
and followees in the user profile can be known. This fact
makes graph sampling methods, such as BFS and RW, fea-
sible and cheap. We define the resource for visiting a new
neighbor of the current vertex as Walk-Cost, which can be
normalized as 1. We should mention that information of
sampled vertices are stored in cache, therefore only visiting
new vertices generates sampling cost.

Finally, in different sampling methods, various sampling
strategies may be adopted in each step and more resource
may be used. For example, in MySpace and Twitter, each
user is given a unique user-ID, thus Random Vertex Sam-
pling can be implemented by selecting a random number
from the space of user-IDs in each step. If the selected num-
ber is a valid user-ID, the user is sampled, otherwise the
number is discarded. However, for some OSNs, valid user-
IDs are sparse in the space of user-IDs. Sampling a valid
user requires nearly 10 attempts on average in myspace [18]
while only 1.5 attemps on average in Twitter according to
the measurement results provided in [11]. Similarly, in Ran-
dom Jump, we may jump to any vertex to restart the random
walker with a fixed probability in each step. To compare dif-
ferent sampling algorithms fairly, we define the resource for
choosing a new random vertex in the total graph as Jump-
Cost and we choose Jump-Cost as 10 in our evaluation.

3. ANALYSIS OF EXISTING SAMPLING AL-
GORITHMS

The sampling process of social graphs usually starts from
either one or several initial vertices, which can be called seed-
s. At the beginning, we have Total-Cost resource budget for
sampling. After we visit a vertex, its neighbors are all dis-
covered and sampling strategy is used to decide which vertex
is sampled next. Then this process is iterated until Total-
Cost is used up in the sampling process. Different sampling
methods differ in the size of seeds and sampling strategy. In
this section, we describe several popular sampling methods
in detail.

Breadth-First Sampling (BFS): BFS is a classical graph
sampling algorithm, which has been widely applied in study-
ing OSNs. For example, BFS is used for measurement and



topological characteristics analysis [2,16] and user behavior
analysis of OSNs [11,23].
BFS starts from one random seed in the graph and aims

at collecting the vertices which are close to the seed. T-
wo queues are kept in the sampling process of BFS: queue
Sampled stores sampled vertices, while queue Waiting s-
tores vertices that will be sampled. Initially, the seed is put
into queue Waiting. At each step, the first vertex v in queue
Waiting is moved to queue Sampled, and all the neighbors
of vertex v are added into queue Waiting, unless the neigh-
bor is already in queue Waiting or queue Sampled. The
process loops until the Total-Cost is used up. During the
sampling process, once queue Waiting is empty, a random
vertex will be selected and inserted into queue Waiting.
Recently, [9] points out that BFS is biased towards high-

degree vertices. Moreover, due to our evaluation, BFS may
only collect some local part of the graph and performs badly
in disconnected or loosely connected graphs. Since BFS has
the “ready to use” merit, it is still widely used for social
graph sampling.
Metropolis-Hasting Random Walk (MHRW): Ran-

dom Walk is another widely used graph sampling method.
In RW, one random vertex is the initial seed and the sam-
pling strategy is that we always choose one of the neighbors
(vertex v) of the current sampled vertex (vertex u) as the
next vertex, which spends Walk-Cost. Thus, the transition
probability from u to v is

Pu,v =

{
1/ku if v is u’s neighbor
0 otherwise

(1)

RW is simple and practical but it is biased towards high-
degree vertices. In RW, the next sampled vertex just de-
pends on the current sampled vertex, thus the sampling
process can be modeled as a Markov Chain. If the graph
is undirected and non-bipartite, the Markov Chain is ergod-
ic [14]. Therefore, the stationary probability of each edge in
undirected graph is equal to 1/|E| and each vertex is sam-
pled with the probability ku

2|E| . We can see that vertices with

high-degrees are more likely to be sampled in RW.
To get rid of the bias towards high-degree vertices, the

transition probabilities in RW should be modified appro-
priately and Metropolis-Hastings Random Walk is proposed
in [9] to sample vertices uniformly. The Metropolis-Hastings
algorithm is a Markov Chain Monte Carlo method to sam-
ple from a probability distribution whose direct sampling is
difficult [15].
The algorithm of MHRW is as follows. Firstly, choose a

vertex u as the initial seed. Secondly, select one neighbor
(vertex v) of vertex u and generate a random number p
between 0 and 1 uniformly. If p < ku/kv, v is chosen as
the next sampled vertex, otherwise the walker still stays as
vertex u. Then, the second step is iterated until Total-Cost
is exhausted. The transition probability from u to v is

Pu,v =


min( 1

ku
, 1
kv

) if v is u’s neighbor

1−
∑
w ̸=u

min( 1
ku

, 1
kw

) if v = u

0 otherwise

(2)

From equation (2), we can see that the possibility to visit
vertices with high degree is reduced and MHRW is proved to
converge to uniform sampling, which means that each vertex
in the whole graph is sampled with the probability 1/|V | [9].

We should mention that one design assumption of MHRW
is that the social graph is well connected. Besides, all dupli-
cated vertices are valid and important in MHRW, since the
duplication makes MHRW converge to uniform sampling,
inherently.

Random Jump (RJ): Random Jump is a sampling method
which is similar to RW. The difference between them is that
the walker in RJ can jump to any random vertex in the
graph with a fixed probability in each step. The benefit of
jumping randomly is getting rid of the random walker being
stuck in some locally well connected part of the graph. When
the jump strategy is adopted, it will spend Jump-Cost. We
should mention that RJ is still biased towards high-degree
vertices, since if the jump strategy is not adopted, the ver-
tices are selected just like RW.

Jump-Cost may be large in some OSNs. For instance, in
Myspace, valid user-IDs are sparse in the space of user-IDs.
Then, the size of sampled vertices obtained by RJ would
be much smaller than the sample size obtained by RW. In
practice, we usually prefer to get a large and fair sample,
given the same Total-Cost. However, RJ may not perform
well in respect of the size of sampled vertices.

Frontier Sampling (FS): All the sampling methods men-
tioned above are vertex sampling methods. Frontier Sam-
pling [19], which performs multiple dependent random walk-
ers in sampling graphs, is an edge sampling algorithm. More-
over, vertex sampling performs better than edge sampling in
estimating small degree distribution [19], and in most OS-
Ns vertices with small degree make up a major portion of
the total graph. Thus we are focusing on improving the
performance of vertex sampling methods in this paper. N-
evertheless, we still introduce FS, which is a representative
edge sampling method.

FS works in the following way. Firstly, multiple vertices
are selected as the initial seeds. Secondly, choose a vertex
u from the set of seeds with the probability proportional to
its degree, i.e. P (u) ∝ ku. Thirdly, choose an edge (u, v)
that starts from vertex u as a sample edge, and then replace
u with v in the set of seeds. Repeat step 2 and step 3 until
Total-Cost is exhausted.

FS is practical and samples edge uniformly, which indi-
cates that the sample set itself is still biased towards high-
degree vertices. Unlike MHRW, which aims at obtaining an
unbiased sample directly, FS corrects the bias by specific es-
timators. In [19], estimators related to degree distribution
and global clustering coefficient, which are based on sampled
edges, are proposed. The results show that FS can achieve
lower NMSE than RW for estimating degree distribution,
especially in disconnected or loosely connected graphs.

RWRW is proposed in [9], and if it is treated as an edge
sampling method, RWRW uses exactly the same estimators
as FS. The comparisons between MHRW and RWRW [9] are
also suitable for comparing MHRW and FS. Firstly, MHRW
has the “ready to use”merit, since vertices are sampled uni-
formly. However, FS is biased towards high-degree vertices
and requires re-weighting appropriately. Secondly, specif-
ic estimators should be built for estimating different graph
properties. However, only estimators of degree distribution
and global clustering coefficient are currently available and
estimators for purely data-analytic procedures, such as hier-
archical clustering or multidimensional scaling, is impossible
to be constructed [9]. Thus, MHRW is more simple and ver-
satile than FS in practice.



From the above description, we can conclude that BFS,
RW and RJ do not converge to uniform sampling and are
biased towards high-degree vertices. MHRW samples ver-
tices uniformly, however, one design assumption of MHRW
is that the social graph is well connected. FS, which is an
edge sampling method, performs stably in disconnected or
loosely connected graphs, but specific estimators should be
built for estimating graph properties. Besides degree dis-
tribution and global clustering coefficient, estimators of any
other properties are currently unavailable [19].

4. ALBATROSS SAMPLING

4.1 Workflow of Albratross Sampling
In this paper, we introduce random jump strategy into

MHRW and propose an improved vertex sampling method
named Albatross Sampling. The benefit of jump strategy in
AS is to get rid of being stuck in some locally well connect-
ed part of the whole graph and gathers a “comprehensive”
sample of the original graph.
To make this method simple, we fix the probability of

jump in AS, i.e., if jump strategy is adopted, each vertex is
sampled with the same probability 1/|V | in this step. The
algorithm of AS is described in Algorithm 1 and the code is
available at [1]. Here, p represents the probability of jump
and we choose p as 0.02 in our evaluation.

Algorithm 1 Albatross Sampling

cost ← 0
sample set S ← empty
select a random vertex v as the initial seed
while cost < Total-Cost do

generate α from uniform distribution U [0, 1]
if α < p then

choose a new random vertex u
add u to the sample set S
if u is visited for the first time then

cost ← cost+Jump-Cost
else

cost ← cost+Jump-Cost−1
end if
v ← u

else
select an edge (v, w) starting from v randomly
generate β from uniform distribution U [0, 1]
if β < kv/kw then

add w to the sample set S
if w is visited for the first time then

cost ← cost+Walk-Cost
end if

else
remain at v
add v to the sample set S

end if
end if

end while

4.2 Unbiasness of Albatross Sampling
In AS, the next sampled vertex only depends on the cur-

rent sampled vertex, thus the sampling process can be mod-
eled as a Markov Chain and the transition probability from
vertex u to vertex v is

Pu,v =


min( 1−p

ku
, 1−p

kv
) + p

|V | if v is u’s neighbor

1− p−
∑
w ̸=u

min( 1−p
ku

, 1−p
kw

) + p
|V | if v = u

p
|V | otherwise

In the above equation, p is the probability of jump in AS
and |V | represents the total number of vertices in the origi-
nal graph. In AS, the inherent Metropolis-Hasting algorith-
m guarantees that each vertex is sampled uniformly when
jump strategy is not adopted. Then, when jump strategy
is adopted, the probability of jumping to each vertex in the
whole graph is equal. Therefore, the stationary probability
of each vertex is equal to 1/|V |.

Benefit from random jump strategy, AS avoids being trapped
in locally well connected part of the social graph and con-
verge to uniform sampling quickly. Due to our evaluation,
AS estimates degree distribution with lower NMSE by con-
suming the same resource budget and converge quickly with
smaller convergence time, even sampling disconnected or
loosely connected graphs. Therefore, Albatross Sampling
is a promising robust and effective vertex sampling method
for social network analysis.

5. EVALUATION
In this section, we evaluate the performance of the sam-

pling algorithms mentioned above. The comparison is fo-
cused on the performance of BFS, MHRW and AS. BF-
S is not an unbiased sampling method, nevertheless, we
still compare with BFS, for its widely use in OSNs anal-
ysis [2, 11, 16, 23]. Here, we use two criterions to evaluate
different sampling algorithms.

(1) The accuracy of estimating degree distribution:
Normalized Mean Square Error (NMSE) is used for evaluat-
ing the estimating accuracy of these methods, which is also
used in [19]. NMSE for degree k is defined as

NMSE(k) =

√
E[(θ̂k − θk)2]

θk
(3)

In this paper, we use NMSE as a criterion to evaluate
the robustness of sampling methods. If a sampling algorith-
m achieves a lower NMSE in estimating degree distribution
given the same sampling budget, it is regarded as more ro-
bust.

(2)The converge rate of algorithms: Firstly, we choose
the evolution of estimating θ10 for comparison, without loss
of generality. Here, θ10 means the fraction of vertices with
in-degree (out-degree) less than or equal to 10, which is also
used in [19]. Moreover, we give out the convergence time of
different sampling methods. Similar to the mixing time of
a Markov chain [13], we define convergence time as the cost
c0 such that

|θ̂k(c)− θk| ≤ 1/4 (4)

for 0 ≤ k ≤ max(in− degree, out− degree), c0 ≤ c

Convergence time reflects the least budget required for
getting an acceptable estimation of the degree distribution.

5.1 Data Set
The data sets used for evaluation are Buzznet [3] and

Berk-Stan [20], and their basic information is shown in Ta-
ble 1. Buzznet is a photo, journal, and video-sharing social
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Figure 1: CDF, NMSE and Converge Curves for Buzznet(Cost=|V|/20) and Berk-Stan(Cost=|V|/100)

media network where vertices represent users in the graph.
In Buzznet, user A can subscribe to the updates of user B,
which indicates a directed edge from A to B. Berk-Stan is
the web graph of Berkeley and Stanford collected in 2002.
Vertices represent pages from berkely.edu and stanford.edu
domains and hyperlinks between them are represented as
directed edges.

Table 1: Basic Information of Data Set
Type Nodes Edges SCC

Buzznet Directed 101,169 4,284,534 0.944
Berk-Stan Directed 685,230 7,600,595 0.489

In table 1, Strongly Connected Components (SCC) repre-
sents the fraction of number of vertices in the largest strong-
ly connected component [5]. SCC shows the connectivity
of a graph: if the value of SCC is smaller, the graph is
more loosely connected. Thus, Buzznet is a tightly connect-
ed graph and Berk-Stan is a loosely connected graph. And
we use both tightly and loosely connected graphs to compare
these algorithms.

5.2 The Accuracy of Estimate
To make the analysis of degree distribution impressive,

we plot the Cumulative Distribution Function (CDF) and
Normalized Mean Square Error (NMSE) of degree distribu-
tion of the sampled vertices. In Figure 1 (a) and (b), the
in-degree CDF and NMSE of Buzznet are presented. We

choose Total-Cost for sampling as 5% of the total number of
vertices of Buzznet. In Figure 1 (d) and (e), we present the
in-degree CDF and NMSE of Berk-Stan. We choose Total-
Cost for sampling as 1% of the total number of vertices of
Berk-Stan. Since vertices with in-dgree less than 100 make
up a major portion (more than 90%) of the total vertices
in both these two datasets, comparisons of CDF and NMSE
are focused on small degree vertices.

From these figures, we can see that BFS is biased towards
high-degree vertices significantly, whose NMSE is much larg-
er than that of MHRW and AS. Moreover, the CDF curves
of MHRW and AS are both almost identical to the original
CDF, but AS achieves smaller NMSE than MHRW. From
the above description, we can conclude that AS is more ro-
bust for estimating degree distribution in both tightly and
loosely connected graphs.

5.3 The Converge Rate of Algorithms
To evaluate comprehensively, we also compare the con-

verge rate of these sampling methods. Figure 1 (c) and (f)

show three sample paths of the evolution of θ̂10 as a func-
tion of sampling cost over Buzznet and Berk-Stan. And the
black lines show the true value of θ10. We can see that two
out of three sample paths in BFS underestimate θ10, which
indicates that BFS is biased towards high-degree vertices.
MHRW performs badly in these two graphs and none of
three paths converge to the true value. However, all three
paths of AS converge quickly and stably to the true value.



Moreover, in Table 2, we present the convergence time
of different sampling methods in Buzznet and Berk-Stan.
The convergence time of AS is 9.3% (Buzznet data set) and
5.1% (Berk-Stan data set) of the convergence time of BFS
and 12.0% (Buzznet data set) and 7.1% (Berk-Stan data set)
of the convergence time of MHRW. From these simulation
results, we find that AS is more effective and reliable for
converging quickly and stably.

Table 2: Convergence Time
Buzznet Berk-Stan

BFS 4371.2 6355.2
MHRW 3361.4 4652.5

AS 406.5 329.6

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose an improved vertex sampling

sampling algorithm named Albatross Sampling, which intro-
duces random jump strategy into MHRW during the sam-
pling process. Due to our evaluation, AS is more robust for
estimating degree distribution with lower NMSE and more
effecitve for converging more quickly with much smaller con-
vergence time than MHRW and BFS, given the same sam-
pling cost. Moreover, AS is reliable for sampling both tightly
and loosely connected social graphs.
In the future, we will test on more large-scale social graph-

s and use AS to sample real OSNs. Also, we will evaluate
the performance of these sampling algorithms in estimating
other important graph properties, such as Assortativity [17]
and Clustering Coefficient [21, 22]. Besides, one challenge
for AS is that if valid user-IDs are quite sparse in the space
of user-IDs, Jump-Cost would be too large. For instance,
in December 2010, Facebook advertised over 500 million ac-
tive users and each user is encoded by a 64-bit user-ID [10],
resulting Jump-Cost is huge in Facebook. Proper improve-
ment of AS should be considered for sampling social graphs
with large Jump-Cost.
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